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INTRODUCTION

This report describes the radiation testing performed on fiber optic
transmitter and receiver integrated circuits (IC) developed for the Air Force
Avionics Laboratory (AFAL) under a Honeywell contract. The objective of the
program was to develop low cost fiber optic modules for transmission and
reception of digital data via fiber optic bundles (data rates of 10 kbits/s
to 10 Mbits/s). The integrated circuits were optimized for producibility,
wide usage, Tow cost, high reliability and electromagnetic interference/
electromagnetic pulse (EMI/EMP). Nuclear radiation hardness was not a goal
of this development program. Two AFAL technical reports describe in detail
the design, fabrication, and testing of the receivers and transmitters used
for radiation testing (Refs. 1 and 2). In order to realize the full potential
of these low cost ICs in operational and upcoming systems, future acquisition
costs must also be low. The ICs are now commercially available and produced
by Spectronics (Receiver SPX 3620; Transmitter SPX 3619).

Following delivery of parts from Honeywell, AFAL provided AFWL with
30 receivers and 30 transmitters for radiation evaluation. The radiation
testing was partially funded by AFAL, as AFAL covered the cost of radiation
facility use. The radiation tests were performed between May 1979 and
October 1979.

In addition to the radiation test results, the electrical and radiation
test procedures are also discussed in this report. Due to difficulties
experienced in receiver operation as initially described in AFWL's test plan
previously submitted to AFAL, Section II of this report covers the updated
test circuitry and measurement procedures. Section III covers the radiation
test results. The intent of this work was to determine the device failure

1. Elmer, Ben R., Fiber Optics Receiver Integrated Circuit Development,
AFAL-TR-78-185, Air Force Avionics Laboratory, Wright-Patterson Air
Force Base, Ohio, December 1978.

2. Elmer, Ben R., Fiber Optics Transmitter Integrated Circuit Development,
AFAL-TR-78-107, Air Force Avionics Laboratory, Wright-Patterson Air
Force Base, Ohio, July 1978.
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levels in various radiation environments, not to perform a detailed analysis of
failure mechanisms. Radiation tests were conducted in total gamma dose
(Co-60), neutron, and ionizing dose-rate (Flash X-ray) environments. The
transmitter and receiver operated well after neutron and total dose environ-
ments, but the receiver was at best marginal after transient radiation tests.

e e il

Sections V-VII of this report describe the radiation characterization
tests that were performed on fiber optic transmitter and receiver modules
(SPX 4125 and SPX 4126, respectively) manufactured by Spectronics of Honeywell
under contract to the AFAL. The modules are self-contained packages that
incorporate the ICs tested in Sections II-IV of this report and Spectronics
optical diodes. The testing and evaluation was performed during the period
between December 1979 and March 1980.

The electrical and radiation test procedures are described, and the ]
radiation test results are discussed. The modular construction of these 3
devices prevented the use of many measurement methods used in Sections I1I-IV.
Therefore, no direct comparison of test data can be made.
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II. ELECTRICAL TESTING (SPX 3619, SPX 3620)

The following is a description of the electrical testing procedures used
for preirradiation and subsequent incremental irradiation evaluations. How-
ever, before discussing the transmitter and receiver tests, circuit designs
used to perform the testing are presented.

SYSTEM CONFIGURATION

The initial fiber optic system configuration is given in Figure la.
Several changes were made in the physical layout of the fiber optic trans-
mitter and receiver system. The Tight-emitting diode (LED) and photodiode
detector were located 0.5 m from the transmitter and receiver printed circuit
boards for easier shielding in radiation environments. No problems appeared
to arise from this arrangement and hardly any bit errors resulted (bit error
rate (BER) of 10-1© to 10-11 error/s. However, it was later discovered that
the photodiode current (II) was approximately 40 pA instead of the desired
operating range of 250-500 nA. This large current resulted in the very few
bit errors observed. Lowering the photodiode current to 500 nA caused
oscillations in the fiber optic output. The fiber optic system was then
redesigned (Figure 1b) to allow closer placement of the photodiode to the
sensitive receiver integrated circuit (FORIC). However, due to frequent
interchange of receivers during testing, it was imperative to use an IC
socket for easier part removal and insertion. The socket capacitance still
caused problems in the fiber optic operation at low photodiode current levels.
To obtain the desired current levels (< 500 nA), the receiver photodiode input
pin (pin 5) was bent up and soldered directly to the photodiode anode. The
total length from the pin lead of the receiver to the photodiode case was
1 cm. Typical minimal operating currents observed in the receivers were
200-300 nA, depending upon the individual receiver. To be more confident of
proper fiber optic system and error detection circuit operation, a bit error
introduction circuit was also added to the fiber optic transmitter (FOTIC)
board. When activated, the circuit would eliminate a positive pulse in the
data stream to the transmitter. The error detection circuit would then catch
the missing pulse and update the number of errors displayed by LEDs.

Figures 2 and 3 give the component connections and values for the transmitter
and the receiver.

ok e i L i am
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Figure 2. Transmitter component values and connections
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Figure 4 shows a block diagram of the error detecting circuit and a

; timing diagram. The following is a brief description of the operation of

! the error detection circuit. A 5 MHz (50% duty cycle) signal is applied

: simultaneously to the fiber optic system and to the error detection circuit.
Propagation delay time of the input signal through the fiber optic system is
40-70 ns using a short fiber link of 15 cm. To simulate this output for error

. detecting purposes, the input signal is delayed through hex buffers. The

_ delayed output most closely matching the fiber optic output (F.0.) is used

{ as the simulated output (S.0.). Strobe signals are also needed to compare

the F.0. and S.0. signals during the ZERO and ONE state. Multivibrators

3 and 4 (0.5.3 and 0.5.4) are fixed for a 45 ns negative outgoing output

pulses and are used as the strobes to enable the multiplexers which do the

actual comparison. Multivibrators 1 and 2 are variable output pulse lengths

; used to position the strobes with respect to the simulated output. Multi-

vibrator 3 is used as a strobe that enables MUX 2 when the simulated output

is low. Likewise, multivibrator 4 strobes MUX 1 when the simulated output is 1

¢ high. The MUX outputs are ANDED together and a 45 ns pulse results whenever

: an error occurs (when F.0. and S.0. do not match during the MUX enable pulses).

Any resulting errors are then counted by decade counter ICs, decoded for

7-segment digits, and then displayed on LEDs. If over 100 errors result, a

flip-top is set which drives an LED signifying that over 100 errors occurred.

! The fiber optic output, simulated output, and strobes are always monitored .

on a dual beam oscilloscope. ]

TRANSMITTER TESTS

har'd

Transmitter tests involve verification of operation and measurement of
input (pins 10 and 11) and output currents in both the ZERO and ONE states.
Rather than performing the current measurements manually, a short routine
was set up on an ALMA 480 bench-top integrated circuit tester.

-
P

R

Ten measurements are made using the IC tester. The first four are LED
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"on" current measurements with pin 7 grounded, then pin 8 grounded, then pin
9 grounded, and finally pins 7, 8 and 9 grounded. There is no LED used with
the FOTIC in these tests. Instead of an LED, pin 4 is connected to a 2.5 V
bias with the current monitored by the tester. Test 5 measures the LED
"off" current at pin 4 with an input set to a ZERO state. Test 6 measures
the IC power supply current draw (Icc). The last four tests measure the

.
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ZERD and ONE state input currents, at the input (pins 10 and 11). Table 1
shows a sample data sheet filled with typical values.

TABLE 1. SAMPLE ALMA 480 TRANSMITTER DATA SHEET

TRANSMITTER  DATE: 5/30 6/1 6/6 6/8 6/12 6/13 6/1k 6/21
No. 18 LEVEL: Pre RAD 5102 maold wao'® ao’® 1o wao* 7xaott
Input: Measure: Typical Data:
Pin 10 Pin 11
I, - 50mA (mA) e e Pin 4 50 mA
1, - T5mA (mA) 1 'l pin 4 75 mA SAMPLE DATA SHEET
Ig = 25mA (mA) 1t l Pin 4 25 mA SHOMING TYPICAL CURRENT
Id - 150mA (mA) ‘1 ‘1 Pin 4 150 mA VALUES
Iy - off (uA) ‘0 By Pin 4 2 uA
I (ma) Q! ‘1 Pin 1 30 mA
¢ Voo = 5.5 volts
Iy, ~ PIN 10 (mA) ‘0’ e Pin 10 1.l mA
‘1' input = 2.4 volts
1., ~ PIN 11 (ua® ‘0’ ‘1 pin 11 0.05 uA
T '0' input = 0.4 volts
I, - PN 11 (ma) ‘1 0 Pin 11 1.1 mA
I.. - PIN 10 (uA) 1 '’ Pin 10 0.05 uA

IH

Before the above tests were performed, the transmitters were all checked
for proper operation in the fiber optic system using the error detection
circuit. Following verification of operation, a test is performed on the
transmitter to determine the radiation degradation of drive current at low
current levels which are not tested by the ALMA 480. The test consists of
setting up the control receiver (FORIC-1) and control transmitter (FOTIC-1)
in the fiber optic system for 250 nA photodiode current. FOTIC-1 is then
removed without changing the LED current level. Attenuation of the fiber
optic signal seen at the photodiode receiver is controlled by reducing the
LED drive current with a variable resistor tied to the transmitter's output
transistor emitter. Thus degradation of the irradiated transmitter's drive
capability as compared to that of FOTIC-1 will result in a lower photodiode
current. The irradiated transmitters are placed in the circuit and the
corresponding photodiode current is measured. This test allows comparison

12
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of the irradiated transmitter current to that of the control device and to
preirradiation current levels. To prevent any reduction of damage by high

current annealing (especially after Co-60 irradiation), the transmitter
tests in the fiber optic system, which use approximately 1 mA LED current
(Id), are performed before the ALMA 480 tests which involve 150 mA current
tests.

RECEIVER TESTS

A1l tests on the fiber optic receiver (FORIC) were performed in the fiber
optic system in conjunction with the error detection circuit. The ALMA 480
cannot measure very low input current, and it also has a limited bandwidth
of 10 kHz which renders it useless for any realistic receiver testing.

‘i A1l bit error rate (BER) measurements including postradiation tests

. were performed with a data stream of 10 Mbits/s (5 MHz square wave). The

5 MHz square wave is identical to 10 Mbit/s Manchester coded alternating
ZERO/ONE pattern as seen in Figure 5. At a photodiode current of 250 nA and
input signal of 5 Mbits/s, the FORIC BER should be less than 10-8 bit errors/s.
To have some confidence in the BER measurement, the test was run at 5 Mbits/s
for 16% minutes to obtain 10! pulses per test. Due to the length of time
required to test each receiver, the BER measurements were not made under

!
ig various output loading conditions. The FORIC output load was one TTL load
5 (the output is used as an input to the multipliexer in the error detecting
! circuit).
hY
Vi As mentioned earlier, all the receivers had pin 5 (photodiode input)
LJ turned up and soldered directly to the photodiode so that the desired
“ operating range of 250-500 nA could be achieved while having the device in
f' a low insertion force socket for easy testing. The BER is very dependent
: i upon the photodiode current (II) level as seen below in a measurement made
- on FOTIC-1 and FORIC-1 pair at 5 Mbits/s.
» v
S CURRENT (II) BIT ERRORS BIT ERROR RATE
Y 250 nA 100/2 s 5.0 x 10-8
? 210 nA 170/30 s 5.6 x 10-7
, 215 nA 52/30 s 1.7 x 10-7
! 220 nA 14/10 min 2.3 x 10-°
' 225 nA 16/1 h 4.4 x 10-10
} 230 nA 6/2 h 8.3 x 10-11
1
. 13
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For this receiver, a photodiode current below 200 nA causes severe
oscillations at the receiver output. Thus, an effective way to observe
radiation damage is to note any variation in the minimum current of operation
for a given receiver. Depending upon the solder connection at pin 5, the
seating of the device in the socket, and drift of the nancampere current
meter, it was not uncommon to observe 30-40 nA differences in minimum current
on repetitive insertions of the same receiver. The BER test was performed
20 nA above the minimal operational current. Minimal operational current was
chosen to be a point where the oscilloscope showed a clean output waveform and
the LED error counter would not register any errors in approximately a 5-15 s
time span. Thus in the photodiode current versus BER data just presented, the
minimum current for FORIC-1 would be about 220 nA and the BER test would be
performed at 240 nA. Photodiode current measurements were made with a HP435
micro volt-ampere meter. Photodiode off current measured with the FOTIC
input set to ZERO, consistently read 5-6 nA (both pre- and post-irradiation)
for all receivers. The meter displays the DC average input of both the ZERO
and ONE state. For example, a meter reading of 110 nA (50% duty'cycle input)
indicates a photodiode ONE current of 215 nA and ZERO current of 5 nA. For
data taken during the tests, a meter reading of 110 nA was just doubled to
220 nA and recorded as such. Thus the minium current is actually slightly
lower (5 nA) than indicated in the data.

15
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ITI. RADIATION TEST RESULTS (SPX 3619, SPX 3620)

The following approach was used to perform the BER measurements on test
devices. One transmitter designated (FOTIC-1) was used only to test all
; receivers before and after irradiation. FOTIC-1 was used as a control device
' and never irradiated. Similarly, one receiver (FORIC-1) was used to test
all the transmitters before and after radiation in the fiber optic system. 5

Methods of BER receiver tests and transmitter tests were described in Section

II. Line voltage transients (caused by turning electrical equipment on or
off) occasionally resulted in additional bit error count. Even including
these sporadic error as actual fiber optic bit errors, the BER is still better
than 10-% bit errors/s for every device both pre- and postirradiation.

TOTAL DOSE TESTS

" Seven transmitters and nine receivers were tested in a Co-60 radiation
‘ environment. The number of transmitters tested was reduced to seven, since
. four devices were ruined during initial programming of the ALMA 480 tests.

i Device evaluations were performed after 1, 5, 10, 50 and 100 krads, 1 Mrad,
i 5 Mrads(Si). AFWL's 5-kCi Co-60 facility was used for tests up to and
including 1 Mrad total dose. The 5 Mrad test was made nearly 3 weeks later
at Sandia Laboratory's 80 kCi Co-60 Gamma Irradiation Facility (GIF). To
prevent any room temperature annealing following irradiation and prior to
testing a device, the integrated circuits were suspended above 1liquid
nitrogen to keep them cool. The bias configurations for the receivers and
transmitters tested are given in Table 2.

e e G+

TABLE 2. BIAS CONFIGURATIONS FOR RECEIVERS/TRANSMITTERS
TRANSMITTERS RECEIVERS
Dev. No. Bias Dev. No. Bias
5 Unbiased 1 Unbiased
6 Unbiased 9 Unbiased
4 Biased/Input GND 17 Unbiased |
7 Biased/Input FND 3 Biased/Input GND
3 Biased/Input + 5 V 29 Biased/Input GND
9 Biased/Input + 5 V 5 Biased/Input + 5 V
8 Biased/Input CLK 30 Biased/Input CLK
8 B8iased/Input CLK
16
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Table 3 gives the minimum operating current for the receiver.

TABLE 3. MINIMUM OPERATING CURRENT (nA) VERSUS TOTAL DOSE (rads(Si))

DEV PRE 1 5 10 50 100 500 1M  PRE? 5M
| NO. 5M
29 220 220 230 250 225 220 240 240 210 195
30 220 240 230 250 235 230 210 225 260 195
o 11 330 340 340 325 300 325 330 285 290 240
17 275 290 290 290 270 300 270 255 255 200
5 260 290 300 290 310 315 290 245 PIN BROKE
3 220 230 250 260 240 240 250 230 230 205
8 225 240 230 230 200 230 230 215 230 190
9 220 240 230 230 220 240 220 230 200 170
1 285 290 250 260 240 260 250 240 210 170
a(Pre 5 Mrad test measurements were made because 20 days had elapsed since the

1 Mrad tests were performed).
! The minimum currents ranged from 170 nA to 340 nA for different receiver's
? photodiode current (II). Since, as stated earlier, the minimum operating
] current fluctuated by as much as 30-40 nA upon removal/reinsertion of the same
device; the only significant radiation induced change observable in minimum
current appeared after the 5 Mrad irradiation. There was a noticeable
! decrease in current levels indicating that the receiver sensitivity improved
‘ to where the average minimum current is now less than 200 nA. Receiver 5
}
|

I P I T AN e IV PSR Mt 1 T S TR S

had pin 5 fall off after 1 Mrad due to excessive bending.

TABLE 4. BIT ERROR RATE (x 10-1° bit errors/s) VERSUS TOTAL DOSE (rads (Si))

v DEV PRE 1 5 10 50 100 500 1M PRE  5M f
LI NO. 5M §
$ 29 1 0 1 0 2 0 2 0 1 1 "
’ 30 0 6 10 0 0 0 1 0 0 4
! 11 o 1 1 8 10 0 0 1 2 5
| 17 1 1 0 0 0 0 0 4 0 3
i 5 1 0 0 12 0 0 0 0 PIN BROKE
/ 3 6 o0 o0 0 0 0 0 19 310
. 8 0 0 © 0 1 7 0 0 0 0
9 0 301 0 0 0 0 1 0 0
? 1 0 0 o 0 0 0 1 0 0
\ 0 - Less than 1 x 10-1° bit errors/s
i 17
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As seen in Table 4, all BER measurements are well below the given specification
of 10-8 bit errors/s. If no errors were observed after 15 minutes, the error
rate is less than 1 x 10-19 bit errors/s and written in the table as a "0."

The transmitter data are given in Tables 5 through 7. Table 5 is an
average of the data taken with the ALMA 480 IC tester. The LED drive current
(Id), power supply current, LED off current, and input current all decreased
with total dose exposure. The typical LED current decrease was less than 5
percent after 5 Mrad(Si), Table 5 does not include device 7 as part of the
average (see Table 6), since a problem in the LED drive current and power supply
current tests occurred somewhere between the 1 and 5 krad tests. The cause
does not appear to be linked to total dose irradiaiton, since beyond 5 krads
the device responds very uniformly. It is most uniikely that the device was
inserted backwards in the socket or was electrically overstressed. One other
interesting point about device 7 was that the LED off current always was an
order of magnitude larger than the rest of the devices (20 pA versus 2 pA).

The individual ALMA 480 transmitter data sheets are given in the appendix.
Table 7 shows the variation in transmitter current (while operating in the
fiber optic system) as measured by the receiver photodiode current. The table
has no data until after 50 krads since this is when the test was originated.
FORIC-1 and FOTIC-1 are set up for 250 nA photodiode current by adjusting the
transmitter emitter resistance. The irradiated transmitters than replace
FOTIC-1 in the circuit. Although no significant variation in transmitter
current versus dose is seen, it also shows a problem with device 7. For the
given transmitter emitter resistance, device 7 produces substantially less
LED current as seen by the lower photodiode current than the remaining devices.

NEUTRON TESTS

Passive neutron irradiations were performed on the devices at Sandia's
pulsed reactor (SPR II and SPR III). Table 8 shows the desired fluences and
total fluence received by the 10 transmitters and 10 receivers as measured

by sulfur dosimeters.
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TABLE 7. TRANSMITTER CURRENT VARIATION AS MEASURED BY RECEIVER PHOTOCURRENT (nA)

DEV PRE 1 10 50 100 500 1M 5M
3 - - - 265 265 270 265 270
4 - - - 270 265 265 265 265
5 - - - 265 260 265 265 260
6 - - - 260 265 265 265 260
7 - - - 185 180 180 180 180
8 - - - 280 280 280 280 285
9 - - - 290 280 285 285 285

TABLE 8. FLUENCES FOR RECEIVERS/TRANSMITTERS.

DESIRED FLUENCE

FLUENCE RECEIVED

(1 MeV equiv.)

(n/cm?) (n/cm?)
5 x 1012 4.1 x 1012
1 x 1013 1.0 x 1013
4 x 1013 3.3 x 1013
7 x 1013 7.3 x 1013
1 x 1014 1.3 x 1014
4 x 104 3.9 x 101*
7 x 104 7.5 x 1014

On two occasions SPR facility operators unbent pin 5 of the receivers.

Bending

the pin back up for testing caused leads to break off on several receivers.

The replacement of these broken devices with new ones cause the receiver

minimum current (Table 9) and BER tables to appear a bit disorganized.
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TABLE 9. MINIMUM RECEIVER PHOTODIODE CURRENT (nA) VERSUS FLUENCE (n/cm?)
DEVICE NO. PRE  5x10!2 1013  4x1013  7x10!3 10'4 4 x 10'% 7x101¢
2 260 270 260 (PIN BROKE - - =)
4 245  (PIN BROKE - - - - =)
6 245 240 240 250 230 220 190 2000
7 265 265 260 250 255 255 190 1500
10 250 240 240 245 235 230 170 1500
12 260 260 260 (PIN BROKE - - =)
13 270 270 255 265 250 245 180 1500
15 245 250 240 245 245 235 175 2000
16 270 280 275 290 290 280 155 1500
18 240 230 240 220 235 215 155 1000
25 210 N 210 200 200 205 480 5000
23 295 N N N 260 290 220 2000
24 270 N N 260 270 200 2000
26 260 N N N 310 310 150 4000

N - Not tested or irradiated at given level

The receivers had photodiode currents in the 250 nA range until 4 x 1014
n/cm? when a dramatic decline in minimal operating current resulted in 10
of 11 devices. The other device (receiver no. 25) was already experiencing
the beginning of a sharp increase in minimum current that every device
exhibited at 7 x 10'% n/cm2. At 7 x 1014 there was no output pulse, just a
steady state response until the current was increased to the value given in
the table.

ment.

Table 10 gives the BER for the receivers in the neutron environ-

The BER for the neutron irradiated devices was also less than the
specification of 1 x 10-8 bit errors/s, although the photodiode current at
7 x 10'*% n/cm? was an order of magnitude above that set for specification of
the BER. It should also be restated that the given BER rates include any
errors induced by line voltage transients and that the actual BER rates are,
therefore, somewhat better than those given in the tables.

22
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TABLE 10. BIT ERROR RATE (x 101° bit errors/s)

DEVICE NO. PRE  5x10!2 1013 4x10'3  7x1013 1014 4x1014  7x1014

2 2 6 8 (PIN BROKE - - =)
4 0 (PIN BROKE - - - - -)
6 2 1 1 0 3 0 0 -
7 2 0 0 1 1 1 0 0
10 0 0 1 0 1 0 0 0
12 0 13 7 (PIN BROKE - - <)
13 0 4 3 14 1 1 7 0
15 0 4 0 4 1 2 4 2
16 6 ] 0 0 0 1 0
18 1 0 0 4 0 1 2
25 11 11 0 1 4 0 3 0
23 0 N N N 18 22 0 0
24 N N 11 1 1 0
26 1 N N N 6 3 2 0

0 - Less than 1 x 10'% bit errors/s (0 errors in 15 min)
N - Not tested

Table 11 is an average of the ALMA 480 tests on the 10 transmitters at
the various fluence levels. The main effects of neutron damage on the fiber
optic transmitter are decreases in LED drive current, LED off current, and
power supply current. LED drive current decreased by 5 percent of preirradi-
ation levels after 4 x 1014 and by 12 percent after 7 x 101% n/cm2. The
table also hows a large difference in high input current levels (IIH) between
transmitter input pins 10 and 11 (ALMA tests 8 and 10). This was caused by
transmitter 17 which had an input high current at pin 10 of 3.3 pA instead
of a typical device's current of 0.03 pyA. The individual ALMA 480 data
sheets are given in the appendix. Table 12 gives the variation in trans-
mitter current while operating in the fiber optic system as measured by the
photodiode current (FORIC-1 and FOTIC-1 are set up for 250 nA).

O g S ]




61€°0 €I€°0 12€°0 LRE"0 2o 9840 oY "0 99€ *0 (y1) OT HId - I
1€0°1T- €loT- €60°T-  660°T- ROT " T- JOT T- Lot T~ 60T T- (yw)  TT RId - Ty
62070 L10°0 72070 HEO "0 20T°0 6510 080°0 2n0°0 (yt)  TUKId - °r
6£0°T- 6L0°T- 6601~  TOT'T- ROT " T- 60T 1- 80T 1- 60T T~ (yw) o m1d - 1
0Lt 62 069°0€ 006°TE 079 Tt 0£g"TE 0m6°TE 0610 06 TE (yu) 2%
¢note IR 6222 092°2 onEzg IXTRE g2 Liz-e (v) Jio - F- s
0£2°26T  0g9-ORT  Ong €T  OTq'uyl  066°Gql  0EQ'9qT 062" LAl 0%z LNT (yu) wiggr - f1
09N €2 0g8E " 12 ono*Se 0TSz onE * 62 oLy sz 09462 0$7°5e (v) vz - 1
OmOO - . . 4, ° . H .
99 02 TL 029°€L 0TI 4L oty Nl 0£9° 1L 08L 4L 058" 1., (vw) vagL - U1
0E T - e . ) . ) )
9 06T°gH 0n5° 6 09gT6q 0gL° 06 092°09 0TE "0% 0g€ "0 (vw) vmos - °r
ﬁoa.x» L0T*n . 0TX1 cOT*L c70TXn c0TX¥T 270T%S avy 234 *TIAST *DAVx "ON
@ L2/ nT/9 £1/9 ct/9 8/9 9/9 /9 0£/$ :AIVd SELLIMSIVEL
n
~
]
[~ 4
-
]
=
w < SYILLIWSNVYL 0ILVIAYYYI NOWLN3IN OT ¥0d4 S1S3l INTHEND 08v YWV 40 39vd3aAY TTT 318Vl
4
i
e T T T e e e e e T T




o -

—— e — -
- N B e —

-
P, - e
B

i

AFWL-TR-79-168

TABLE 12. TRANSMITTER CURRENT VARIATIONS AS MEASURED BY RECEIVER
PHOTODIODE CURRENT (nA) VERSUS NEUTRON FLUENCE (n/cm?)

DEVICE NO. PRE 5x1012 1013  4x10!3  7x10!'3 1014 4x10!4  7x10!¢

10 285 285 280 285 280 280 270 255
11 260 260 250 260 255 250 240 230
12 290 290 290 295 295 285 275 260
13 275 280 280 280 280 280 260 250
14 260 260 260 270 270 265 255 245
15 275 280 275 285 280 275 265 255
16 280 285 285 290 290 285 270 260
17 285 280 280 285 280 280 265 250
18 285 280 285 285 280 280 270 250
20 290 290 295 295 290 285 275 260

The transmitter LED drive current appears very uniform up through 1 x 1014
n/cm2. At 4 x 10'4 and 7 x 1014 n/cm? the transistor LED current begins to
decrease as seen by the corresponding decrease in photodiode current. At
7 x 10'%4 n/cm2 the photodiode current has decreased by 10 percent which is
very similar to the LED current drive decrease seen by the transmitters at
higher LED currents (ALMA 480 tests).

DOSE RATE TESTS

Radiation testing was conducted on three receivers and three transmitters
at AFWL's Febetron 705 Flash X-ray (FXR) machine (20 ns puise width). Upset
levels were determined for (a) the entire fiber optic system being exposed
(including the LED, fiber, and photodiode); (b) only the transmitter exposed;
and (c) only the receiver exposed. The objective was to measure the upset
levels at a variety of photodiode current levels.

During test setup and checkout in the FXR screen room, the problem of
obtaining bit errors caused by electrical activity (plugging equipment into
AC outlet, turning lights or equipment on or off, etc.) persisted. Since it
was anticipated that firing of the FXR machine would cause a similar situation,
elimination of the problem appeared necessary to obtain upset level data. By
increasing the LED current, which increased the photodiode current to 1 pA,
and by obtaining AC power for all instrumentation and equipment from a
different shielded screen room via extension cords, the problem of electrical

25
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noise simulated bit errors appeared solved. The next step was to fire some
FXR test shots with the entire fiber optic system well shielded. Firing of
the FXR machine still caused unwanted bit errors even after the apparent fix.
Until this point, attenuation of the fiber optic signal seen at the photo-
diode receiver was controlled by reducing the LED drive current with a vari-
able resistor tied to the transmitter's output transistor emitter. Increasing
the LED current to 150 mA and optically attenuating the signal did not have
any effect on the unwanted errors. Since the FXR shot is a single predictable
event, it was a good source to trigger an oscilloscope and observe what signals
were causing the bit errors. Figure 6 (a-d) shows FORIC output waveforms at
different current levels and other critical signals with the system still
completely shielded (the FXR pulse occurs 500 ns after the start of the trace
sweep). Besides the output errors, the only other signal that looked faulty
was the receiver preamp output which causes the erroneous output. The only
short-term solution found was to increase the photodiode current up to 10 pA
where a good response is obtained (Fig. 6d). -

The transmitter was tested for upset by covering the remainder of the

20 x 30 cm fiber optic system box with 2-inch lead bricks and leaving a

1 x 2.5 cm opening for the transmitter IC. The upset level for the transmitter
was found to be independent of the LED current magnitude. Th highest dose rate
obtainable with all the shielding around the rest of the circuit was 3.8 x 10°

rads/s. Figure 7 shows the results at this distance which just happened to be

the minimal upset level. The LED current (Id) was varied from 2 puA to 150 pA i
(photodiode current varied from 0.5 pA to 40 pA). The main difference between f
the photographs appears in the number of bit errors recorded from the receiver

output which does vary with input current. At a dose rate of 1.5 x 10° rads/s, ;
The LED current exhibited some minor waveshape degradation at the time of the {
pulse. At 8.8 x 10® rads/s there was no indication at all of any upset. All i
three transmitters exhibited similar characteristics and upset levels. ALMA
480 tests were identical on these devices before and after dose rate testing.

The minimum upset levels for the receivers were fairly low. The responses
are shown in Figure 8 and summarized in Table 13.

26
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Figure 6a. Photodiode set at 2uh. Figure 6b. Photodiode set at 2 uA.
Top trace: FORIC output Top trace: FORIC vcc
Bottom: FORIC pre amp Bottom: Photodiode

reverse bias (Vr = 40v)

Figure 6c. Photodiode set at 300nA Figure 6d. Photodiode current - 10 uA
Top trace: FORIC output Top trace: FORIC output
Bottom: FOTIC LED current Bottom: FORIC pre amp

There was no exposure at the test box in these tests. The disturbances seen come
from electrical noise of the burst. The larger the photodiode current, the better
the output response. The burst occurs 500 ns after start of the trace.

Figure 6. FXR Electrical Noise Induced Upsets with the Test Box Totally Shielded.
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Figure 7b. Photodiode set at 2.0 uA
LED current - & mA
FORIC output has 12 errors

Figure 7a. Photodiode set at 0.5 uA
LED current - 2 mh
FORIC output has 20 errors

Figure 7c. Photodiode set at 10 uA Figure 7d. Photodiode set at 40 uh
LED current - 40 mA LED current - 150 mA
FORIC output has & errors Foric output has 1 error

A1l photographs have the transmitter unshielded. The dose rate is 3.3x109 rads/sec.
The top trace of each picture is the FORIC output and the bottom is the FOTIC LED
output (pin 4). The FOTIC output upset is seen to be independent of LED current.
The FORIC bit errors are measured by the error detection circuit.

Figure 7. Transmitter Transient Radiation Tests

28
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Figure 8a. Dose rate 4.5x106 rads/sec Figure 8b. Dose rate: 6.7x10
Photdiode current - 2 uA Photodiode current - 10uA

Minimum receiver upset
levels at various

photodiode currents.

Figure 8c. Dose rate: 1.5x107 rads/sec
Photodiode current - 40 uA

The top trace in all photographs is the FORIC output and the bottom trace is the
FORIC pre amp output. These tests were performed with only the receiver being
irradiated. The pulse occurs 500 ns after the start of the sweep. The larger
the photodiode current, the better the radiation response.

Figure 8. Receiver Transient Radiation Tests.
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TABLE 13. RECEIVER UPSET LEVELS

PHOTODIODE CURRENT (II) LEVEL UPSET (rads(Si)/s) LEVEL
40 yA 1.5 x 107
10 pA 6.7 x 108
2 pA approx. 3-4 x 108

TABLE 14. MINIMUM OPERATING CURRENT BEFORE AND AFTER FXR TESTS

RECEIVER NO. MINIMUM CURRENT (nA)
PRE FXR POST FXR
19 240 240
27 350 350
28 300 305

The upset level at 2 pA photodiode current is approximate because at such low
current levels the FXR machine noise causes faulty outputs as stated earlier.
This made it difficult to determine a precise value for upset level. A1l
three receivers had similar upset levels and experienced no changes in mini-
mum current or bit error rates. To determine the receiver recovery time,
the test box was moved as close as possible to give a larger dose rate while
still shielding all but the receiver. Figure 9 shows that at the maximum
rate of 9 x 10® rads/s the receiver output goes high for 3 ps then drops

to a low state for 55 us before the preamp signal (pin 9) regains some

amplitude and the output comes back.

The final sequence of dose rate tests was done with the whole system
exposed. As expected, failures resulted all the way to the minimum dose-
rate obtainable without shieliding. Figure 10 shows the system response
at 5 x 10% rads/s. The error detector recorded three errors at 40 pA at
this dose rate. There was only a small difference between the 2 pA and
10 pA test. Although the preamp output looks like the same amplitude during
all the dose rate tests for all current levels, the amplitude does increase
as the photodiode current increases. The oscilloscope traces were adjusted

to give uniform preamp output puises.
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Figure 9. Receiver recovery

time following a

burst a 9x108 rads/sec.

b

R

P‘.

? The above traces show the response of the receiver biased at 10 uA photodiode

] current to a 9x108 rads/sec pulse at different increments of time. The top trace is
73 the FORIC output and the bottom trace is the pre amp output. Recovery of the

53 FORIC output occurs 55 us after the pulse. A dose rate of 9x108 is the maximum

l; obtainable when shielding the total circuit except for the receiver.

‘ Fiqure 9. Receiver Recovery Time Following a 9x108 Rad/s Burst.
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Figure 10a. 2uA photodiode current Figure 10b. 10uA photodiode current
FORIC output has 16 errors FORIC output has 15 errors

Upset level for the
entire fiber optic

system exposed.

Figure 10c. 40uA photodiode current
FORIC output has 3 errors

The photographs show the FORIC output response (top grace) and the pre amp output
(bottom trace) for the entire system exposed at 5x10° rads/sec. This is the
minimum dose rate obtainable. The output errors were measured by the error
detection circuit.

Figure 10. Transient Upset for the Entire Fiber Optic System Exposed.
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Iv. CONCLUSIONS (SPX 3619, SPX 3620)

The receiver and the transmitters performed satisfactorily in a Co-60
total ionizing dose environment up to 5 Mrad(Si). Transmitter 7 did
unexpectedly show problems in the 1-5 krad range, but due to the very con-
sistent response through the rest of the radiation tests, it is not likely
that radiation was the cause of the damage. There were no significant
differences in devices that were irradiated passively, biased, or biased
with clocked inputs. At 5 Mrad, the transmitter current degraded 5 percent
and the receiver sensitivity actually improved. No devices had a BER
larger than 10-8 bit errors/s.

The neutron tests showed that the transmitters worked fine through
7 x 10'* n/cm2. The transmitter currents were beginning to degrade at
4 x 10'* n/cm?2, and were down 13 percent of the preirradiation levels at
7 x 10'* n/cm2. The sensitivity of most receivers increased 20 percent at
4 x 10'* n/cm2, but at 7 x 10'% n/cm? the photocurrent required for operation
increased an order of magnitude to 2-5 pA. To insure reasonably low minimum
operating currents, the passively irradiated receivers should not be exposed
to more than 4 x 104 n/cm2.

In a dose rate environment, the transmitter upset threshold is about
1.5 x 10° rads/s. This level is independent of the LED current (within the
tested range of 2 yA to 150 pyA). At 40 pA photodiode current (using maximum
LED current) the receiver upset level is 1.5 x 107 rads/s. At 2 pA the upset
level is approximately 3.5 x 10% rads/s. Lower photodiode current upset
Tevels could not be tested in this environment due to severe electrical noise
induced upsets. At 1 x 10° rads/s with a 10 pyA photodiode current, recovery
time following the burst is approximately 60 ps (worse for lower photodiode
current levels). For total system exposure, the system upset Tevel would

be below 106 rads/s at low photodiode receiver currents.
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V. ELECTRICAL TESTING (SPX 4125, SPX 4126)

This section describes the electrical tests performed on the fiber optic
transmitter and receiver modules. These tests were performed before irradia-
tion and after each incremental level of total gamma dose and total neutron

fluence.

No major changes in any of the test fixtures or procedures were necessary
from the writing of the test plan. Any changes that were made are noted in

the general procedure descriptions following:
TRANSMITTER PARAMETRIC TESTS

Several of the transmitter tests were performed under static conditions.
These included the worst case power supply current measurements and the worst
case input current measurements. These tests were performed manually on an
ALMA 480 integrated circuit tester.

The balance of the tests were performed with the transmitter in an
active operational mode. The general fiber optic system configuration is
given in Figure 11. A1l tests, in which the transmitter was actively oper-
ating, were performed using a receiver designated as a control device. A
device designated as a control device is not subjected to any radiation
environment at all. This was done to insure that any system degradation is
due solely to the irradiated device.

The active tests are done using a 5 MHz square wave input signal. The
measurements include the system propagation delay and an optical output power
measurement. The propagation delay is measured at a photodiode bias of
+5 V and +30 V. The irradiated transmitter's average optical cutput power
was compared to that of a control transmitter to determine any optical output
degradation. This was accomplished by adjusting the optical output of the
control device to a given level (1. 26 uW) which was the same throughout
testing. After this level is set, the control device is removed from the
circuit (without changing anything else) and is replaced by the irradiated
device. The resulting power readings form an output power ratio. This
ratio is then normalized with respect to the power ratio at zero rads(Si).
This reflects a percentage change in the optical output power level.
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The method for obtaining variability (attenuation) of the optical output
power will be briefly described. The fiber optic output cable is couplied to
another fiber optic cable across a variable distance. The attenuation can be
varied by changing the distance separating the two cables. Optical filters
were originally to be used to achieve the attenuation but the coupling losses
alone were enough to achieve our purpose. The variable distance configuration
also gave more flexibility in the amount of attenuation. The optical power
measurements were made using an optical power meter.

RECEIVER PARAMETRIC TESTS

A11 of the receiver tests were done during active operation using a
5 MHz square wave input signal.

The measurements included the propagation delay between the system's
input and output voltage waveforms. The rise and fall times of the output
waveform and the power supply current during normal operation were also
measured. The delay time measurements were made using the manufacturer's
TTL test load circuit (Figure 11), so that direct comparison of data is pos-
sible. The power supply current measurements were done with the BER circuit
as the load. Throughout testing this loading drew about 3 mA more current
than the manufacturer's test load. Thus, it represented a worse case value.
A1l of the measurements were done at a photodiode bias of +5 V and +30 V.

Two input conditions were imposed on the receivers. First, all of the
receivers were tested at a specified input optical power level (2.52 uW),
which was the same throughout testing. The second condition was established by
attenuating the input signal to slightly above the operating threshold of the
test receiver. All of the measurements described above were taken at both of
these power levels.

RECEIVER FUNCTIONAL TEST - BIT ERROR RATE (BER)

The BER is expressed in errors per pulse and is the chance of an error
occurring during the time interval associated with that pulse.

A block diagram of the general fiber optic test circuit, which includes
the BER test circuit, is shown in Figure 12. A simplified timing diagram is
presented in Figure 13.
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The operation of the BER circuit is straightforward. The 5 MHz square
wave input to the fiber optic system under test is also applied to a set of
hex inverters. These inverters are used to delay the signal until this
simulated signal closely matches the actual fiber optic system's output, as
seen on an oscilloscope (hex inverters were used instead of hex buffers due to
chip availability). These two signals are applied to the address lines of a
multiplexer where the actual comparison is accomplished. The multiplexer
inputs are in states such that when the multiplexer is enabled, a positive
pulse is output if an error is present. Cleaner outputs were obtained by using
one of the multiplexers on the chip for the zero comparison, two strobe (enable)
pulses are generated by edge triggered multivibrators. The first set of
multivibrators is triggered from the simulated fiber optic waveform. They
have adjustable pulse widths and are used to position the second set of multi-
vibrators as near as possible to the center of the highs and lows of the
simulated waveform. The second set prduces the actual strobe pulses which are
45 ns long. One strobe enables multiplexer one on the highs and the other strobe
enables multiplexer two on the lows. All of these signals are closely moni-
tored on a dual beam oscilloscope. If an error is present a 45 ns positive
pulse is presented to an OR gate, which passes it to the counting circuitry.
If the fiber optic output should have been a zero, but was not, a flip-flop
is set to drive LED 1. If the decade counters count more than 99 errors,
another flip-flop is set driving LED 2.

An error introduction circuit was added to the circuitry to make sure 1
the BER circuitry was operating properly (for a detailed drawing, see Figure
11). A one-shot multivibrator was connected to input B of the transmitter.
This point is normally high, enabling the transmitter to function properly.
A debounced switch is used to enable a one shot which holds input B low for

approximately 100 ns. This introduces at least one error which should be
updated on the BER circuit.

For efficient operation of these fiber optic devices, transmitted data
should be Manchester encoded. The necessary circuitry for such a code was not
developed, as it was recognized that a 5 MHz square wave is equivalent to a
5 Mbit/s data rate of all ZEROS or ONES. Since it was only necessary to
functionally exercise the devices during testing, this was a perfectly
acceptable input. It should be noted that all ZEROS and ONES is the best
case input to these devices.
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VI. RADIATION TEST RESULTS (SPX 4125, SPX 4126)

TOTAL GAMMA DOSE TESTS

Total dose testing was performed at AFWL's 5 kCi Co-60 facility on two
transmitter/receiver pairs. The devices were electrically evaluated after
50, 100, 300, 500, and 700 krads, 1, 2, and 3 Mrads(Si) of total gamma dose
was absorbed. One transmitter/receiver pair was passively irradiated with all
of the device pins grounded. The other pair was actively operated during the
testing using a 1 MHz square wave input. This pair was butted together and
aligned so that operation of the devices was possible. This type of placement 3
gave a more uniform radiation exposure over both devices, and irradiating a '
fiber optic cable was not necessary. The photodiode was operated with +5 V
bias and the system output was monitored on an oscilloscope.

Before presentation of the test data, a table (Table 15) will be pre-
sented that gives the manufacturer's maximum specifications. Because of the
modular construction of the devices, the propagation delay and rise time
measurements are total system measurements. The maximum system times were
computed using the square root of the sum of the squares of each component's
maximum time. The rise time of the cable was neglected because of its small
material constants (multimode dispersion, 22 ns/km; material dispersion
3.5 ns/km), and the short length of cable used (less than 1.5 m).

The transmitter data is presented in Tables 16 through 19. Table 16
contains the calculated power ratio percentages. The table entries are
determined by dividing the test device's optical output power by the reference
device's output power (which was constant throughout testing). This ratio is
then divided by the respective preirradiation ratio. This then gives a direct
means in which to see the percentage change in the optical cutput power.

Throughout the data presentation, the PASSIVE subscript (or title) refers
to the devices irradiated with all pins grounded. The ACTIVE subscript (or
title) refers to the device pair that was actively operated during irradiation.

Except for an unexpected gain seen in the 300-500 krad(Si) range, the
transmitter's efficiency decreases with total dose to finally show a 28%
foss by the 3 Mrad(Si) irradiaton.
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!
TABLE 15. MANUFACTURER'S MAXIMUM RATINGS '
DEVICE PARAMETER SYMBOL TYP MAX UNITS
Input High Iy ! 1 40 pA
Level Current
Input Low Iy 24 -l1.2 -1.6 mA
. Level Current
Transmitter

High Level Iccy S| 119 135 mA
Supply Current
Low Level IccL 4 28 35 mA
Supply Current A
Supply Current Iec 48 55 mA

Receiver Minimum
Optical Imput Pn 700 nW
Power
Propagation
Delay
Low-High tD(L—H) 31 51 ns
High-Low tD(ﬂeL) 31 51 ns

System Output
Transition
Time
Low-High . 8 14,1 ns
High-Low tf 3 12.2 ns
Pulse Width t 0 7.6 ns
Distortion _E(L_H)

D(H-L)

aInput not under test is at ground.
bInput not under test is a 2.4 V,

Both inputs at 2.4 v.
dOne input is at 0.4 V, the other is at either 0.4 V or 2.4 V.
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TABLE 16. NORMALIZED OPTICAL OUTPUT POWER
RATIO () VS. TOTAL DOSE (YD)

e - e — e e —— - ————— 1

7D (rads (51)) Passive q)Active
0 1.00 1.00
50 K 0.89 0.94
100 K 0.86 0.87
300 K 0.87 0.97
500 K 0.88 0.88
700 K 0.81
1M 0.82
2 M 0.75
3 M 0.72
'
|
‘ TABLE 17. POWER SUPPLY CURRENT VS. TOTAL GAMMA DOSE
x
PASSIVE ACTIVE
¥ ¥ (rads (s1))
(4 D Loegma) Lo ma) | Ipo,ma) I, (ma)
f 0 117.9 29.5 123.4 29.5
i 50 K 117.5 29.4 123.1 29.4
100 K 116.8 29.1 122.8 29.1
' 300 K 115.5 28.9 122.3 29.1
500 K 114.8 28.6 122.1 28.8
' 700 K 121.9 28.7
s 1 M 121.9 28.8
R 2 M 122.3 28.6
! 3 M 122.8 28.7
N
',ll
!
h 42
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TABLE 18. TRANSMITTER INPUT CURRENT VS. TOTAL GAMMA DOSE

. PASSIVE ACTIVE
' ‘YD(rads(Sl)) IIL(ma) IIH(na) IIL(ma) IIH(na)

. 0 ~0.988 10 20.958 13

‘ | 50 K -0.982 10 -0.548 14
g 100 K -0.982 7 -0.952 8

! 300 K -0.965 7 -0.926 10
500 K -0.963 5 -0.926 7
700 K -0.895 7
] 1 M -0.912 7
2 M -0.907 6
3 M -0.898 6

TABLE 19. TRANSMITTER PROPAGATION DELAY VS. TOTAL GAMMA DOSE

{
. _
' ]
i :
o PASSIVE ACTIVE
T 7Y (rads(8i)) X
N D th(L-R) (ns) tp(H-1) (ns) tyL-m) M) | & (H-L) (ns)
¥ 0 58 58 58.5 59
2] 50 K 59 61 61 60
X 100 K 60 57 61 60
’ 300 K 53 67 54 71
' 500 K 52 67 54 71

! 700 K 54 71
| 1 M 50 70

N 2 M 50 69

, 3 M 61 61

1
\

i

|

!
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The PASSIVE transmitter failed before the 700 krad(Si) evaluation. The
failure, however, did not seem to be radiation induced but rather a reli-
ability problem. The high level power supply current rose approximately 50 mA.
The low Tevel supply current rose by 20 mA. The input current levels seemed
to imply input B was held low, but the device could be operated by switching
input A, implying B was held high. The output power ratio rose to approximately
1.6, indicating a 72% increase in the optical output signal. It would seem
most of the excess power supply current was being pumped into the LED.

The transmitter power supply current measurements are presented in Table
17, and the input current measurements are presented in Table 18. The power
supply current remains essentially constant throughout the testing (no more
than 3% variance). Until the very high doses are obtained, the trend seems
to be a lessening of this requirement. At no time does it come near the
manufacturer's maximum specification.

There was no significant difference between data taken on input A versus
input B. Therefore, only the data for input A is presented (for input B data,
see Appendix C). When the input high level current was measured, the input
not under test was held at + 0.4 V instead of ground as was done by the manufac-
turer. This was an oversight, but it affects the data very little. Subsequent
input high tests, with the input not under test grounded, approximately doubled
the current level. This appears to be a large increase, but these levels are
still in the 20 nA range while the devices have a maximum specification of 1 pA.

Table 19 gives the transmitter propagation delay data.

The data presented were taken with a photodiode bias of +5 V. Data were
also taken at a +30 V bias. The only difference this made throughout testing
was to decrease the delay times 3-5 ns at the +30 V bias.

Note that the propagation delay data do not follow any expected pattern.
There are changes in the middle dose ranges that disappear in the high dose
range, so that the net change beginning to end is less than 3%. There is up
to a 20% variance in the mid-dose range. This almost random data pattern would
seem to suggest some instability in our measurement technique. However,

intensive preirradiation evaluation produced variances of less than 3% - 5%.
During the actual testing, repeated insertion of the device under test into
the test circuit produced variances of negligible significance. The calculated
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maximum specification for delay time was excluded from the beginning.

Tables 20 through 24 contain the data for the receiver tests. Figure 14
is a graphical presentation of the minimum optical input power necessary to
operate the receiver.

The minimum power required for receiver operation follows an interesting
pattern. The efficiency of the photodiode appears to increase initially.
Then there is a large increase in the necessary optical input power followed
by a period of recovery. While the passively irradiated device continues to
show a decrease in the minimum operational power, the actively operated
device begins a definite increase in the necessary input power. It finally
shows an increased need of 140% over the preirradiation level. The passive
device shows a 12% decrease in te necessary optical input power. The
actively operated device fails to meet the manufacturer's specification of
700 nW as being the minimum power for operation for any dose above 300 krad(Si).

The 50 krad data were thrown out because an error in the data acquistion method
was discovered.

The receiver power supply current changed over a 25% range. It initially
increases with total dose, but then shows improvement in the higher doses.
The maximum rating was never exceeded, but it was close in the middle dose
range.

The receiver propagation delay measurements are much the same as the
transmitters. The same question again arose, but the same justification for
the readings being accurate is put forth. Again the manufacturer's maximum
rating was exceeded by even the nonirradiated devices. The pulse width dis-
tortion becomes exceedingly large (15 ns) and then returns to within specifi-
cations (7 ns). This is caused by the initial gradual decrease of the low to
high delay and an increase in the high to low delay. This deterioration is
reversed in the high dose range. Only the data taken at a photodiode bias of
+5 V are presented. Data taken at +30 V follow the same pattern but are con-
sistently 3-5 ns faster (for +30 V bias data, see Appendix C).

The risetime measurements were generally slower when the receiver was
operated at the minimum power for operation and at a photodiode bias of +5 V
(the +5 V bias data are in Appendix C). There was a sudden sharp improvement
in the active device after the 3 Mrad(Si) exposure.
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TABLE 20. MINIMUM POWER FOR OPERATION (Pm) VS. TOTAL GAMMA DOSE

| _ 717(rad5(81)) Pm(Passive)cuw) Pm(Active)cuw)
0 0.568 0.643
50 K - =

: 100 K 0.510 0.499

! 300 K 0.504 1.414 ’

500 K 0.915 1.15 |
700 K 0.638 1.19 i

i 1M 0.638 1.32
2 M 0.514 1.35
I M 0.499 1.52

TABLE 21. RECEIVER POWER SUPPLY CURRENT VS. TOTAL GAMMA DOSE

|} i PASSIVE ACTIVE
Y. (rads(Si)
¥ D ) T Ga) ! Lma) 2[ T,@ma) I (ma)
. 0 48.5 44.0 39.5 39.4
N 50 K 49.0 47.8 43.0 43.6
100 K 47.5 48.5 44.3 45,0
h 300 K 53.7 54.8 48.8 49.0
;i 500 X 54.0 55.0 49.0 48.8
b 700 K 53.8 53.5 48.8 48.6
1M 53.8 53.4 48.8 48.6
? 2 M 49.1 49.0 45.3 45.6
' IM 46.7 46.7 42.9 42.8
;; 31 . is measured when the optical input power to the
rdceiver is 2.52 M.
\ bI is measured when the optical input power to the
% receiver is the minimum to permit operation.
| i
‘y,
ol 46
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TABLE 22. RECEIVER PROPAGATION DELAY (FOR V

=5V, P = MINIMUM
FOR OPERATION) VS. TOTAL GAMMA DOgE

‘ . PASSIVE ACTIVE
' v..(rads(51i)) —
l D tD(L—H)(nS) tD(H—L)(nS) tD(L-H)(nS) tD(H—L)(ns)

: 0 60 60 63 62 :
: 50 K 61 59 64 62 :

100 Kk 63 61 67 63

300 K 58 70 56 71

500 K 56 71 58 78

! 700 K 58 71 58 77

o 1M 58 71 59 76

| 2 M 59 70 61 74

( M 65 58 65 | e

|

TABLE 23. RECEIVER PROPAGATION DELAY (FOR VB =5V, P=2,52 W)
VS. TOTAL GAMMA DOSE

; Y (rads(5i)) PASSIVE ACTIVE
.! D tD(L—H)(hs) tD(H-L)(nS) tD(L-H)(nS) tD(H-L)(nS)

0 56 57 55 61
50 K 56 57 58 57

| 100 K 57 55 57 60

; 300 K 52 65 58 70
500 K 50 68 56 71
700 K 50 67 58 71
1M 50 68 58 71
2 M 49 68 58 69
3IM 59 58 59 61

TABLE 24. RECEIVER RISE TIME (VB = 30 V) VS TOTAL DOSE

W e e < e S ———

PASSIVE ACTIVE
Y . (rads(Si)) )

t , D trH(ns)l trL(nS)Z trH(ns) trL(ns)

‘ 0 5.5 6 11 11.5

: 50 K 6.5 6 11 11

) 100 K 7 8 13 12

, 300 K 7 11 13.5 13

! 500 K 6.5 12 11 16

! 700 K 6 10 11 14

| 1M 6 11 12 15

. 2 M 7 10 12.5 17

; M 8 9 11.5 11

1 P
{ i atrH refers to the rise time with input power equal 2.52 uW. i

"

; bt',.L refers to the rise time with input power equal to the %

' minimum power necessary to drive the receiver. ;

|
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The fall time data are not presented here because, during testing in any
i configuration, the fall time remained essentially constant at 3 ns. The
f largest increase was from 2.5 ns to 4 ns. . This is well below the maximum
; g specification (fall time data are in Appendix C).

Throughout testing the BER measurement was performed at the minimum power
for operation and at a photodiode bias of +5 V. The only errors ever recorded
occurred after the 3 Mrad(Si) exposure of the passive device (two errors
counted). A1l of the other events were zero. In the 16% minutes of the test,

- PPN LA N S SRR WA TINAS 137 TR o g7

approximately 100 errors would have had to occur to exceed the manufacturer's
rated BER of 10-8 bits/s. The data collected indicate a BER of approximately
10-10,

o e

DOSE-RATE TESTS

i : The dose rate testing was performed at AFWL's Febetron 705 flash X-ray

' machine (20 ns pulse width). One transmitter/receiver pair was evaluated in
this environment. The devices were electrically evaluated, as in Section V,

i before and after the dose rate testing. These evaluations showed no changes.

Before the actual device tests began, an experiment was performed to
evaluate the shielding obtained from the metal module. Dosimetry measurements
were performed on a hollowed out module. These measurements indicated that
the module reduced the dose rate by about 12%. A1l of the dose rates given
with the data do not take this into account. To obtain the actual dose rate

absorbed by the electronics, 12% of the given dose rate must be discounted.

The receiver responses are shown in Figure 15. The receiver tests were
done by shielding the 8- x 12-inch test box with 5-cm lead bricks, having

- —

Rl S SRR VR UR S SR

only a 1- x 1-cm opening in front of the receiver. The minimum upset level
was so low that the opening had to be covered with lead. Pieces of lead 1/8-
inch thick were placed one at a time in front of the opening until the dose
rate was low enough for minimum upset. Minimum upset was defined to be when
the dose rate caused only one error. The dose levels became so low as to be
unmeasurable on the equipment available to us and could only be approximated.

&

— p —— ey - -

The minimum upset level was dependent upon the optical input power. With

o
® WY

everything at the optimum operational level (i.e., maximum input power, photo-

diode bias of +30 V), the minimum upset level was 1.3 x 10% rads/s. Minimum

LLETNC

upset occurred at much Tower dose rates if the optical input power was decreased.
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(a)  "O" test, all cir- (b) Dose rate: 1.3x10%rads/s
cuitry well shielded. Optical power: 32uW

(c) Dose rate: 7.6x105rads/s (d) Dosc rate: 105rads/s
Optical power: 5.5uW Optical power: 2.5uW

The top trace in all photos is the input to the fiber optic
transmitter and the bottom trace is the receiver output. The
pulse occurs approximately 350ns after the start of the trace.

Figure 15. Receiver Minimum Upset Levels With Varying Optical Input Power
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Changing the photodiode bias from 30 V to 5 V caused upset at a slightly lower
level, but it was not significant enough (5% difference) to warrant detailed
investigation.

Figure 16 presents the receiver upset recovery time photographs. Extensive
tests showed that the receiver determines the system recovery time. At the
maximum dose rate obtainable with our test fixture (1.8 x 10° rads/s), the
transmitter contributed no errors and the fiber optic cable introduced only
one error (with a 100 ns recovery time). The system recovery time was in the
hundreds of microseconds, so one error is insignificant. The photographs were
all taken at the same dose rate (1.8 x 10° rads/s) but with varying receiver
optical input power. The output is initially forced high for a period of
time and then it drops low until recovery begins. The lowest input power
exposure showed oscillations during recovery. The recovery time was assumed to
be after the oscillations had stopped. The oscillations are visible in Figure
16(c). Since the oscilloscope time base was shorter on the first two shots,
an additional shot was taken, at the optimum input levels, with the time base
set to 500 ps. The same oscillation pattern was not present at the high
input power levels. The recovery time is very dependent on the input power
level, but it varies very little with photodiode bias.

The original plan to monitor the transmitter output with a silicon photo-
diode proved infeasible due to shielding problems and output amplitude problems
presented by the photodiode. Therefore, the fiber optic receiver moduie was
used to monitor the transmitter's output. This presented a problem due to
the low dose rate required to upset the receiver. To determine the transmitter
upset level, two separate fixtures were developed. The transmitter was mounted
on one fixture encased in 5 cm lead bricks except for a 1- x 1- cm opening to
the transmitter. The receiver was mounted on the other test fixture 1 m behind
the transmitter and entirely encased in 5 cm lead bricks. This system worked
very well, as shown by the "0" test shot in Figure 17(a). The minimum upset
level proved to be 2.9 x 10° rad/s.

TOTAL NEUTRON FLUENCE TESTS

Neutron irradiations were performed with Sandia National Laboratories
Pulsed Reactors (SPRII and SPRIII). All of the devices were passively

irradiated and electrically evaluated as in Section I after each neutron
exposure.
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(a)

(c)

Figure 16.

N

Recovery time: 160us (b) Recovery time: 265ps
Optical Power: 32uW Optical power: 5.5ul

The top trace in all photos
is the input to the trans-
mitter, and the bottom trace
is the receiver outrut. The
pulse occurs at the beginning
{-50ns) of the trace. The
wnre rate in all photos is
1.8 x 109 rad(Si)/s.

recovery time:  2.7ms
Optical power: 650nW

Receiver Recovery Times With Varying Optical Input Power

52 j
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(a) "0" test, all cir- (b) 0 errors. g
well shielded. Dose rate: 7x10°rads/s

The top trace in all photos
is the input to the trans-
mitter, and the bottom trace
is the shielded receiver's
output.

t; (c) 1 error. 9
. Dosc rate: 2.9x107rads/s

Figure 17. Transmitter Minimal Upsct Level
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The following pages present tables of data, or graphical representations
of data, for the receivers (the data tables for the graphs are in Appendix D).

Figure 18 displays the receiver minimum power for operation as following
the same general pattern as appeared in the total gamma dose tests. Even with
the improvement after the 8.3 x 10!3 n/cm? irradiation, the receiver still
fails to meet the manufacturer's specification of 700 nW after approximately
2 x 102 n/cm? has been absorbed.

The minimum photodiode bias (Figure 19) can only be approximated below
the 5.52 x 103 n/cm? fluence because no data were taken before that. Initially,
the minimum bias necessary was 1.45 V. The devices had always been evaluated
with a photodiode bias of 5 V because that bias would allow single power supply
operation if necessary. At approximately 3 x 10!3 n/cm? this single power
supply option is no longer viable. Operational problems were never observed
before the 5.52 x 1013 n/cm? irradiation. The devices had always been slower
at the 5 V bias (versus the 30 V bias) but had required 3% - 5% less light
input. When the photodiode bias passed 5 V, the necessary 1ight input was no
Tonger dependent on the photodiode bias; but the device was still slower until
the minimum bias began to approach 30 V.

The BER plot (Figure 20) is an average of the errors introduced by the
two receivers. As can be seen, the BER increases rapidly as the neutron fluence
approaches 1014 n/cm? and exceeds the manufacturer's specifications after the
8.3 x 10!3 n/cm? irradiation. The BER is expressed in units of errors per
pulse or bit. In the test case, the bit length was 100 ns.

The propagation delay and power supply current measurements (Tables 25
and 26) show very little change over the range of neutron fluences. Only the
delay time data for a photodiode bias of 30 V is presented because the 5V
bias could not be obtained for most of the fluence levels. Since the minimum
power for operation approached the 2.52 uW standard level, the delay time and
power supply current measurements were done only at the minimum power for
operation level because the variance was insignificant between the 2.52 pW
level and the minimum power level.

The rise and fall time data tables appear in Appendix D. There was no
notable change in either of these parameters throughout evaluation. At all
observed neutron fluences, the rise and fall times were well within the manu-

facturer's specified limit.
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Figure 20. Bit Error Rate (BER) vs. total neutron fluence
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Figure 21 and Table 27 present the transmitter's normalized optical output

power and power supply current, respectively.

The two transmitters show almost exactly the same amount of degradation
in optical output intensity (the normalized optical output power was computed
the same as in the total dose tests). After a neutron fluence of 8.3 x 1013
n/cm? is reached, the optical output power of the transmitter has degraded by
90%. The power supply current shows a small reduction throughout testing
(an average total of 2 mA}, but this degradation does not seem to be signifi-

cant enough to degrade the output by 90%.

B R N -

The input current data tables are in Appendix D. There was a small, con-
sistent decrease in all of the currents measured. The input high current
measurements were performed with the input not under test at ground, so that g
direct comparison with the manufacturer's specifications is possible. The }
input high current decreased an average of 5 npA and the input low current an

i

average of 5 pA.

TABLE 27. TRANSMITTER POWER SUPPLY CURRENT VS. TOTAL
NEUTRON FLUENCE

4
:5
L (/e T1 T2 ;
hY .
] Iccnma) | Igopma) | Ioey(mo) | I (ma)
N 0 117.1 29.3 118.7 29.7
! 6.83 x 1012 | 117.0 29.2 118.5 29.6
f 1.25 x 1083 | 116.9 29.2 118.4 29.5
} 5.52 x 1083 | 116.2 29.0 117.7 29.4
g 8.30 x 1013 | 115.8 29.0 117.2 29.2
; 1.01 x 101 | 11s.6 28.8 116.9 29.2
3
!l
!
|
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60

is measured when the optical input power to
tWe receiver is the minimum to permit operation.

; TABLE 25. RECEIVER PROPAGATION DELAY (FOR Vg = 30 V, P = MINIMUM
é FOR OPERATION) VS. TOTAL NEUTRON FLUENCE
Yooy R1 R2
R D-H) @)ty @) |ty () | tp gy (s)
j 0 58 56 58 60
| 6.83 x 1012 57 55 58 55
1.25 x 102 58 55 58 55 ,
5.52 x 1083 53 51 52 50 *
8.30 x 1013 54 51 54 50
| 1.01 x 10%4 56 57 56 55
L !
, i
TABLE 26. RECEIVER POWER SUPPLY CURRENT VS. TOTAL
| NEUTRON FLUENCE 1
i
¥ R1 R2
' “'(n/cmzj T i
i I;,(ma) IM@B) I, (ma) Iyy(ma)
“ 0 49.1 48.7 48.4 49.4
14 6.83 x 1012 | 47.4 48.4 48.5 49.4
t 1.25 x 1013 47,5 48.7 48.4 49.3
! 8.30 x 1013 | - 47.6 . 48.3
| 1.01 x 1014 | - 28.9 . 49.5
;
o\ 31,is measured when the optical input power to
: the receiver is 2.52 uW.
b
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VII. _JUNCLUSION (SPX 4125. SPX 4126)

The transmitter module performed poorly in the total gamma dose and neutron
environments when compared to the transmitter IC tested in Sections II-IV of
this report. This fact is evidenced in Table 28 which is a short comparison of
the two devices in different radiation environments. The module lost 28% of
its optical output after absorbing 3 Mrad(Si) of the total gamma dose. It
lost 93% of its optical output after a total neutron fluence of 10!% n/cm2
had been reached. The minimum Togic upset occurred at a dose rate of
2.9 x 10° rad(Si)/s. Figure 22 contains functional diagrams for the modules
and ICs.

The receiver module and IC are compared in Table 23. Again the modules
performed very poorly when compared to the ICs. A biased receiver module more
than doubled its minimum power for operation after absorbing 300 krad(Si) of
total gamma dose. The module experienced dose rate upsets as low as
1.3 x 10% rad(Si)/s even with all of the input parameters optimized. This
level is reduced substantially with any decrease in the optical input power.
Decreasing the optical input also increases the upset recovery time tremendously.
In the neutron environment, the minimum photodiode bias to permit operation
greatly increased. The bias exceeds 5 V after 5.5 x 10!3 n/cm? have been
absorbed, and increases to more than 25 V after the 10!¢ n/cm2? fiuence level.
Up to the point that this bias level exceeds 5 V, a single power supply can
be used to operate these devices. The BER of the receivers exceeds the
manufacturer's specification of 10-8 after absorbing an 8 x 10!3 n/cm? fluence.

The modular construction of the SPX 4125 and SPX 4126 make it difficult
to determine the exact cause of the devices' degradation. From Tables 28
and 29, it is obvious that the modules are more susceptible to radiation than
the ICs are. Since these modules incorporate the ICs tested and the respective
diodes, it - can be assumed that the critical components are the optical diodes.
These diodes are the only major addition to the ICs to make up the modules.

The relative hardness of the ICs compared to the modules seems to indicate that
the additions would be the source of degradations. In a neutron fluence

environment, degradation is caused by displacement damage. The crystal lattice
is disturbed creating recombination centers. This reduces the minority carrier
Tifetime, thereby degrading the LED light output and current generation in the
photodiode. The increases in the receiver's BER could be a combination of the
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photodiode degradation and amplifier degradation, but again the relatively small

change in the receiver IC BER would seem to point primarily at the photodiode.

k. i In the gamma dose environment, reverse bias leakage currents are substantially
increased by the introduction of surface defects. These leakage currents

! seriously affect the photodiodes efficiency. A forward biased junction can be

affected by a charge buildup which lessens the junction field gradient.

Investigation has shown that these diodes are not typical of state-of-
the-art hardened diode technologies (Refs. 1 and 2). The nuclear survivability
of the modules could be greatly improved by integrating into the modules,

diodes that have been tested and proven less susceptible to nuclear radiation.

An operational system composed of these modules will be limited by the
receiver. Several design considerations should be noted before these modules
* are considered for use in a transmission link that has a nuclear survivability

‘ requirement. As a system is irradiated, the transmitter's output will decrease, 1
the cable's transmission efficiency decreases, and the minimum power for
receiver operation will increase. This combination will seriously limit the

' length of the fiber optic 1ink. For example, using the fiber optic cable used

é in our tests (Galite TM 3000), which has a 60 dB/km loss parameter, a signal

could be transmitted 430 m. After absorbing a fluence of 5.5 x 1013 n/cm?
(and no gamma dose), this length would be reduced to 220 m. This calculation
neglects any radiation damage to the fiber optic cable (which is not signifi-
cant). Damage to the fiber would further sorten the link. This type of
radiation degradation and the increase in the system BER should weigh heavily
in system selection.
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APPENDIX A

SPX 3619 AND SPX 3620 NEUTRON TEST DATA
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APPENDIX B

SPX 3619 AND SPX 3620 TOTAL GAMMA DOSE TEST DATA
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APPENDIX C
SPX 4125 AND SPX 4126 TOTAL GAMMA DOSE DATA TABLES
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TABLE C1. RECEIVER PROPAGATION DELAY (P = 2.52 W, VB = 30 V)
VS. TOTAL GAMMA DOSE
‘YD(rads (si)) PASSIVE ACTIVE
"pa-m) @) | Sp@r) ™) [tppop @9 | tp oy 08)
0 51 52 51 56
50 K 53 52 56 56
100 K 52 51 53 55
300 K 47 59 51 61
500 K 47 61 47 61
700 K 45 60 48 62
1M 45 62 49 63
2 M 49 59 50 61
IM 54 52 54 56
TABLE C2. RECEIVER PROPAGATION DELAY (P = PMIN’ VB = 30 V)
VS. TOTAL GAMMA DOSE
Y (rads(Si)) PASSIVE ACTIVE
D t, (L-H) (ns) ty (H-1) (ns) tD (L-H) (ns) £, (H-1) (ns)
0 56 55 59 57
50 K 56 54 60 57.5
100 K 57 55 62 57
300 K 54 64 52 65
500 K 52 66 55 71
700 K 52 65 52 71
1M 53 65 54 70
2 M 55 66 56 67
IM 60 58 62 59
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TABLE C3. RECEIVER RISE TIME (VB = § V) vS. TOTAL GAMMA DOSE
D trH(ns) tr£1n35 trH(ns) trL(“s)
0 6 6 11.5 11
50 K 6 6 11 11
100 K 7 8 13 12
300 K 6.5 10 13.5 15
500 K 6.5 9 11 14
700 K 5 10 11 14
1M 6 10 11 14
2 M 7 9 12 16
M 8 9 11.5 11

TABLE C4. RECEIVER FALL TIME (VB = 5 V) VS. TOTAL GAMMA DOSE

¥ (rads(si PASSIVE ACTIVE
D S G ery e () |t |t (ns)
0 3 2.5 3 3
50 K 3 3 3 2
100 K 3 3 3 3
300 K 3 3 3.5 3
500 K 3 3 3 3
700 K 3 3 3 3
1M 3 3 3 3
2 M 4 4 3.5 4
1M 4 4 3.5 3.5
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TABLE C5. RECEIVER FALL TIME (VB = 30 V) VS TOTAL GAMMA DOSE

PASSIVE

ACTIVE

YD(rads(Si))

tfH(ns)

th(ns)

tfﬂ(ns)

th(ns)

0

50 K
100
300
500
700
1M
2 M
3 M

W
[%)]

RARRXRXRX
WHhWwWwwrPp N
. e o »

v on
w
v

v
WHrLWWWWWWN

w
FLULWWWWLWRONDN
. .

WHhWWWLWWINNDW
. PR

TABLE C6. TRANSMITTER INPUT B CURRENT VS. TOTAL GAMMA DOSE

PASSIVE ACTIVE

! T, (rads(51)) Ty @) | I @ma)| I(na) I (ma)
/ 0 10 -0.988 13 -0.958
H 50 K 10 -0.982 14 -0.948
s 100 K 7 -0.982 8 -0.952
X 300 K 7 -0.965 10 -0.926
! 500 K 5 -0.963 7 -0.926
) 700 X _— - 7 -0.895
! 1M _-— - 7 -0.912
| 2 M - -— 6 -0.907
: 3IM - — 6 -0.898
‘«
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SPX 4125 AND SPX 4126 TOTAL NEUTRON FLUENCE DATA TABLES




AFWL-TR-79-168

TABLE D1. RECEIVER MINIMUM POWER FOR OPERATION VS.
TOTAL NEUTRON FLUENCE

¥ (a/cm) Fap 40 | By (u) 3

0 0.626 0.480 %

' 6.83 x 10%2 0.658 0.488 %
! 1.25 x 107 0.771 0.59 %
{ 5.52 x 1013 2.52 2.50 ;
P 8.30 x 10%3 1.14 1.09 ]
f 1.01 x 10%* 1.25 1.21 ?

TABLE D2. RECEIVER RISE TIME VS. TOTAL NEUTRON FLUENCE

é - Q(n/cmz) t (ns) t. (ns)
| 0 6 6
]
| 6.83 x 102 5 6
13
1.25 x 10 7 7
5.52 x 10%° 6 6
13
8.30 x 10 6 6
14
1.01 x 10 8 9
ﬁ

e A N

NOTE: Due to the minimum photodiode bias
exceeding 5 V and the minimum input power
approaching 2.52 uW, only data at Vg = 30 V,
P = Pm were taken., This is also true for
the fall time data following.
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TABLE D3. RECEIVER FALL TIME VS. TOTAL NEUTRON FLUENCE
:P(n/cmz) te1 (ns) Leo (ns)
0 2.5 2.5
6.83 x 1012 3 3
13
1.25 x 10 3 3
5.52 x 1013 3 3
8.30 x 107> 3 3
14
1.01 x 10 3 3
TABLE D4. RECEIVER MINIMUM PHOTODIODE BIAS FOR OPERATION
VS. TOTAL NEUTRON FLUENCE
\It(n/cmz) VB1 ) VBZ ™)
0 1.45 1.47
6.83 x 1012 — .
1.25 x 1013 — i
13
5.52 x 10 8.0 8.3
8.30 x 10°3 13.9 15.2
1.01 x 10%% 25.8 25.6
TABLE D5. TRANSMITTER NORMALIZED OPTICAL OUTPUT

VS. TOTAL NEUTRON FLUENCE

Y(n/cm™) ¢ 1 L)
0 1.00 1.00

6.83 x 102 0.77 0.74
1.25 x 10%3 0.67 0.67
5.52 x 103 0.24 0.21
8.30 x 10°3 0.10 0.10
1.01 x 10 0.08 0.07
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TABLE D6. TRANSMITTER INPUT CURRENT (T1) VS. TOTAL NEUTRON FLUENCE

¥(n/en?) | Tmna (0 | I a(ma) | Ipyp(na) | Iqy p(ma)

0 28 -0.981 26 -0.984

6.83 x 10-7 28 ~0.979 26 ~0.982

; 1.25 x 1013 25 -0.983 22 -0.985
b 5.52 x 1073 23 ~0.978 20 ~0.982 1
t 8.30 x 10" 21 -0.976 19 ~0.980 |
1.01 x 10 20 -0.977 17 ~0.981 |
|

TABLE D7. TRANSMITTER INPUT CURRENT (T2) VS. TOTAL NEUTRON FLUENCE

! w(n/en?y | Tina M) | Ippa®a) | Tyyg(na) Iipp(ma)
A 0 11 -0.977 28 |-0.983
I 6.83 x 10%2 8 -0.982 26 [-0.983

1.25 x 1013 7 -0. 984 22 -0.986
N 5.52 x 1013 6 -0.979 23 -0.981
| 8.30 x 0 6 -0.978 23 -0.981
| 1.01 x 10 5 -0.979 20 |-0.983
b
!

NOTE: Due to the minimum photodiode bias
exceeding 5 V and the minimum input power
approaching 2.52 uW, only data at

i Vg = 30 V, P = Pm were taken. This is

also true for the fall time data following.
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